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Abstract
In this paper, we generalize Cartan’s work on Riemannian locally and globally
symmetric spaces to locally and globally symmetric Berwald spaces. We prove
that a Berwald space is locally symmetric if and only if the flag curvature is
invariant under parallel displacements and a locally symmetric Berwald space
is locally isometric to a globally symmetric Berwald space.

PACS numbers: 02.40.Ky, 11.30.−j

Introduction

The study of Finsler spaces has important applications in physics. In our previous paper [1], we
mentioned several aspects of them. Meanwhile, the notion of ‘symmetry’ is always attracting
the attention of physicists and mathematicians. Cartan’s work on Riemannian symmetric
spaces attains a summit of the study of ‘symmetry’ in Riemannian geometry. Up to now, it has
proved to be the foundation of many new branches in mathematics as well as the applications
of geometry to physics. Therefore, it is undoubtedly very important to study the symmetry of
Finsler spaces.

Among the Finsler spaces, Berwald spaces are a very important class. A Finsler space is
called Berwaldian if the Chern connection defines a linear connection directly on the underlying
manifold (cf [2]). Berwald spaces are only a bit more general than Riemannian spaces and
locally Minkowskian spaces. They provide examples which are more properly Finslerian, but
only slightly so. Since the connection is linear, its tangent spaces are linearly isometric to
a common Minkowski space. Therefore Berwald spaces behave very much like Riemannian
spaces. Since Riemannian spaces have many applications in certain areas of physics, it is
hopeful that Berwald metrics will be useful in the study of some physical problems.

In this paper, we study the symmetry of Berwald spaces. The definition of locally
and globally symmetric Berwald spaces was introduced by Szabó [3]. A Berwald space
(M,F ) is called locally, respectively globally, symmetric if the connection of (M,F ) is
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locally, respectively globally (affine), symmetric. Szabó also gave a classification of the
manifolds in which there exists an irreducible globally symmetric Berwald metric which
is non-Riemannian. His list coincides with Cartan’s classification of irreducible globally
symmetric Riemannian spaces of rank �2 (as manifolds). He also pointed out that there exist
infinitely many irreducible globally symmetric Berwald metrics on each of the manifolds in
his list.

However, there are still some aspects of these manifolds to clarify. First of all, the
geometric meaning of these spaces is not clear. In Cartan’s definition of Riemannian locally,
respectively globally, symmetric spaces, he used the property that geodesic symmetries are
isometries, not only affine transformations (cf [5], p 199). Obviously, Cartan’s definitions are
more closely related to geometry. Secondly, an algebraic description of globally symmetric
Berwald spaces is necessary. In his study of Riemannian globally symmetric manifolds,
Cartan introduced the notion of orthogonal symmetric Lie algebras to describe such spaces
and found that there is a remarkable duality among these spaces. Finally, the relation of
locally and globally symmetric Berwald spaces is not clear. Although Szabó proved that
each Berwald space (not necessary symmetric) is locally isometric to the product of a locally
Minkowski space, a Riemannian space and a globally symmetric Berwald space, it is still not
clear whether the product manifold can be chosen to be a globally symmetric Berwald space
when the original space is locally symmetric. As a contrary comparison, Cartan proved that
each locally symmetric Riemannian space is actually locally isometric to a globally symmetric
space.

To solve these problems, we need to study the property of isometries of a Finsler (Berwald)
space. In general, we have two ways to define an isometry. The first way is that we call a
diffeomorphism φ of a Finsler manifold (M,F ) an isometry if F(dφ(y)) = F(y), for any
y ∈ T M −{0}. On the other hand, we can also define an isometry to be a one-to-one mapping
of M onto itself which preserves the distance of each pair of points of M. It is well known that
these two definitions are equivalent if F is Riemannian (cf [5], chapter 1). In [7] we proved that
this is also true for arbitrary Finsler metrics. This result is vital when we study homogeneous
Finsler manifolds, as well as the locally, respectively globally, symmetric spaces.

In this paper, we will generalize Cartan’s work on Riemannian locally symmetric and
globally symmetric spaces to locally symmetric and globally symmetric Berwald spaces. In
section 1, we study isometries of Berwald spaces and find a relationship between isometries
and affine diffeomorphisms of Berwald spaces. In section 2, we prove that a Berwald space is
locally symmetric if and only if the flag curvature is invariant under all parallel displacements.
Finally, in section 3, we prove that any locally symmetric Berwald space is locally isometric to
a globally symmetric Berwald space. We must point out that our results do not follow directly
from Szabó’s classification result because he did not classify all the globally symmetric
Berwald metrics on each of the manifolds in his list.

1. Some results on isometries of Berwald spaces

In this section, we will promote the study of isometries in [7]. This will be useful in the
following sections. In this paper, manifolds are always assumed to be connected.

The following results are well known for Riemannian manifolds. However, for a Berwald
space, it is far from obvious. The reason is that in a Berwald space the relationship between
its metric and connection is not so close as in a Riemannian space.

Theorem 1.1. Let (M,F ) be a Berwald space, ψ be an isometry of (M,F ) onto itself. Then
ψ is an affine transformation with respect to the connection of F.
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Proof. We first deduce a formula for the connection D of F. For any vector fields T , V,W on
M, we have (see [2], p 260)

T gW(V,W) = gW(DT V,W) + gW(V,DT W). (1.1)

Similarly,

VgW(T ,W) = gW(DV T ,W) + gW(T ,DV W), (1.2)

WgW(V,W) = gW(DWV,W) + gW(V,DWW). (1.3)

Subtracting (1.2) from the summation of (1.1) and (1.3) we get

gW(V,DW+T W) + gW(W − T ,DV W) = T gW(V,W) − VgW(T ,W)

+ WgW(V,W) − gW([T , V ],W) − gW([W,V ],W),

where we have used the symmetry of the connection, i.e., DV W − DWV = [V,W ]. Set
T = W − V in the above equation, we obtain

2gW(V,DWW) = 2WgW(V,W) − VgW(W,W) − 2gW([W,V ],W). (1.4)

Since ψ is an isometry, dψ is a linear isometry between the spaces Tp(M) and Tψ(p)(M),∀p ∈
M . Therefore for any vector fields X, Y,Z on M, we have

gdψ(X)(dψ(Y ), dψ(Z)) = gX(Y,Z).

By (1.4) we have

gdψ(W)(dψ(V ),Ddψ(W) dψ(W)) = gW(V,DWW).

Consequently,

gdψ(W)(dψ(V ),Ddψ(W) dψ(W)) = gdψ(W)(dψ(V ), dψ(DWW)).

Since V is arbitrary and gdψ(W)(·, ·) is an inner product, we have

Ddψ(W) dψ(W) = dψ(DWW).

Now using the identity

DV W = 1
2 (DV +W(V + W) − DV V − DWW − [W,V ]),

we get

Ddψ(V ) dψ(W) = dψ(DV W).

Therefore, ψ is an affine transformation with respect to D. �

Remark. Although we obtain a formula for DWW , it is generally very difficult to deduce a
formula for DV W , because the inner products gV (·, ·) and gW(·, ·) are different.

Theorem 1.2. Let (Mi, Fi), i = 1, 2 be two Berwald spaces, ψ be an affine diffeomorphism
from (M1, F1) onto (M2, F2) with respect to the connections of F1 and F2. If there exists
p ∈ M such that dψ is a linear isometry from Tp(M1) onto Tψ(p)(M2), then ψ is an isometry.

Proof. Let q ∈ M . We only need to prove that F1(y) = F2(dψ(y)),∀y ∈ Tq(M). Join q to
p by a curve γ . Let τ denote the parallel transformation from q to p along γ . Then for any
u, v ∈ Tq(M), we have

gy(u, v) = gτ(y)(τ (u), τ (v)) = gdψ(τ(y))(dψ(τ(u)), dψ(τ(v))).

Now τ(y), τ (u), τ (v) is the result of the parallel displacement (along γ ) of y, u, v, respectively.
Since ψ , being an affine diffeomorphism, transforms vectors that are parallel along γ into
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vectors that are parallel along ψ · γ . Therefore dψ(τ(y)), dψ(τ(u)), dψ(τ(v)) must be the
result of the parallel displacement (along ψ · γ ) of dψ(y), dψ(u), dψ(v), respectively. Thus

gdψ(τ(y))(dψ(τ(u)), dψ(τ(v))) = gdψ(y)(dψ(u), dψ(v)).

Therefore

gy(u, v) = gdψ(y)(dψ(u), dψ(v)).

This completes the proof because F1(y) = √
gy(y, y) and

F2(dψ(y)) = √
gdψ(y)(dψ(y), dψ(y)). �

2. Geometric meaning of locally symmetric and globally symmetric Berwald spaces

In this section, we will clarify the geometric meaning of locally and globally symmetric
Berwald spaces. We first recall a definition. Let M be a Finsler space, p ∈ M . Then there
exists a neighbourhood N0 of the origin of the tangent space Tp(M) such that the exponential
mapping expp is a (C1, and C∞ if M is Berwald) diffeomorphism of N0 onto a neighbourhood
Np of p in M (cf [2]). We can also assume that N0 = −N0. Now we define a mapping of Np

onto itself by

sp : exp(y) → exp(−y), y ∈ N0.

Then sp is called the geodesic symmetry with respect to p. M is called locally geodesic
symmetric if for any p ∈ M , there exists Np such that sp is an isometry of Np.

Proposition 2.1. A locally geodesic symmetric Berwald space (M,F ) must be locally
symmetric. If F is absolutely homogeneous, then the converse is also true.

Proof. The first conclusion is a direct consequence of theorem 1.1. If F is absolutely
homogeneous and (M,F ) is locally symmetric, then for any p ∈ M , we can find a
neighbourhood Np of p such that sp is an affine transformation. Note that (dsp)p = −I and
F is absolutely homogeneous, so (dsp)p is a linear isomorphism of Tp(M). By theorem 1.2,
sp is an isometry. Thus (M,F ) is locally geodesic symmetric. �

Remark. A locally symmetric Berwald space may not be locally geodesic symmetric. In fact,
any Minkowski space is locally symmetric (since the curvature tensor vanishes). But if the
Minkowski norm is not absolutely homogeneous, then it is not locally geodesic symmetric.
Another example is given by S2 × S1. In [2], the authors defined a Randers metric F on
S2 × S1 (p 306). It is easy to see that this metric is locally symmetric (in fact, the connection
of F is globally affine symmetric) but not locally geodesic symmetric. In [7], we give another
explanation of this metric as an invariant Berwald metric on SO(3) × S1/(SO(2) × {e}).
From this explanation, we can also see that this Berwald metric is globally symmetric. But it
is not geodesic symmetric (Randers metrics are not absolutely homogeneous unless they are
Riemannian).

The following result is a generalization of Cartan’s work on Riemannian manifolds.
However, the proof is more complicated. Let us first explain the notion of parallel
displacements of flags. Let (M,F ) be a Berwald space and (P, y) be a flag in a tangent
space Tp(M), p ∈ M . Let q ∈ M and c(t) be a piecewise smooth curve in M connecting p
and q and τ be the parallel displacement along c(t). Then τ(P ) is a plane in Tq(M) (since
τ is a linear isomorphism) and τ(y) �= 0, τ (y) ∈ τ(P ). Therefore (τ (P ), τ (y)) is a flag
in Tq(M). We say that the flag curvature is invariant under the parallel displacement τ if
K(P, y) = K(τ(P ), τ (y)), for any flag (P, y) in Tp(M).
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Theorem 2.2. Let (M,F ) be a Berwald space. Then M is locally symmetric if and only if the
flag curvature is invariant under all parallel displacements.

Proof. Let (M,F ) be a locally symmetric Berwald space. Then its connection is locally
affine symmetric. So the curvature tensor R is invariant under all parallel displacements
(cf [5], p 198). On the other hand, let p, q ∈ M,γ be a curve joining p to q, and τ be the parallel
displacement along γ . Then ∀y ( �= 0), u, v ∈ Tp(M), we have gτ(y)(τ (u), τ (v)) = gy(u, v).
Therefore, by the definition of flag curvature, we have

K(P, y) = K(τ(P ), τ (y)),

where P is any plane in Tp(M) containing y. That is, the flag curvature is invariant under
all parallel displacements. Conversely, suppose that the flag curvature is invariant under
all parallel displacements. Let p, q, γ, τ, y, u, v be as above and suppose that u is linearly
independent of y. Let l = y

F
. Consider the quantity (cf [2], p 69)

K(l, u, v) = gl(R(l, u)l, v)

gl(u, v) − gl(l, u)gl(l, v)
. (2.1)

Then K(P, y) = K(l, u, u). Since K(P, y) is invariant under parallel displacements, we
have

K(l, u, u) = K(τ(l), τ (u), τ (u)).

By the polarization identity (cf [2], p 70)

K(l, u, v) = 1
4 (K(l, u + v, u + v) − K(l, u − v, u − v)),

we have K(l, u, v) = K(τ(l), τ (u), τ (v)). Since in (2.1) the denominator is invariant under
parallel displacements, we have

gl(Rp(l, u)l, v) = gτ(l)(Rq(τ (l), τ (u))τ (l), τ (v)).

Therefore

gτ(l)(τ (Rp(l, u)l), τ (v)) = gτ(l)(Rq(τ (l), τ (u))τ (l), τ (v)).

This means

τ(Rp(l, u)l) = Rq(τ(l), τ (u))τ (l). (2.2)

It is obvious that the equality still holds if u is linearly dependent on y. Now we use a result of
Szabó [3] which asserts that for the Berwald space (M,F ) there exists a Riemannian metric
g on M with the same connection as F. Consider the quadrilinear form B defined by

B(u, v, z, t) = g(Rq(τ (u), τ (v))τ (z), τ (t)) − g(τ(Rp(u, v)z), τ (t)),

where u, v, z, t ∈ Tp(M). Then we have

(a) B(u, v, z, t) = −B(v, u, z, t);
(b) B(u, v, z, t) = −B(u, v, t, z);
(c) B(u, v, z, t) + B(v, z, u, t) + B(z, u, v, t) = 0;
(d) B(u, v, u, v) = 0.

In fact (a) is the well-known property of the curvature tensor of a Riemannian manifold.
(b) and (c) follow from the fact

g(τ(Rp(u, v)z), τ (t)) = g(Rp(u, v)z, t),

since τ is also the parallel displacement with respect to g. And (d) follows from (2.2). By a
well-known result in Riemannian geometry, we have B ≡ 0. Thus

τ(Rp(u, v)z) = Rq(τ(u), τ (v))τ (z),
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i.e., τRp = Rq . Therefore DUR = 0 for each vector field U. Thus D is locally affine
symmetric. �

Similarly, we call a Berwald space (M,F ) a globally geodesic symmetric Berwald space
if it is locally geodesic symmetric and for each p ∈ M , the geodesic symmetry sp can be
extended to an isometry of M.

Theorem 2.3. Let (M,F ) be a Berwald space. Then

(a) (M,F ) is globally symmetric if and only if each point in M is the isolated fixed point of
an involutive affine transformation of (M,F ).

(b) (M,F ) is globally geodesic symmetric if and only if each point in M is the isolated fixed
point of an involutive isometry of (M,F ).

(c) A globally geodesic symmetric Berwald space must be globally symmetric. If the metric
is absolutely homogeneous, then the converse is also true.

Proof. (a) is standard (cf [4], pp 222–9). To prove (b), it is sufficient to prove that an involutive
isometry with isolated fixed point must be a geodesic symmetry. This can be proved similarly
as in [5] (p 205). (c) is the consequence of (a) and (b). �

3. Locally and globally symmetric Berwald spaces

Now we can prove

Theorem 3.1. Let (M,F ) be a locally symmetric Berwald space. Then for any p ∈ M there
exists a globally symmetric Berwald space (M̃, F̃ ), a neighbourhood Np of p in M and an
isometry φ of Np onto an open neighbourhood of φ(p) in M̃ . Furthermore, if (M,F ) is
locally geodesic symmetric, then (M̃, F̃ ) can be chosen to be globally geodesic symmetric.

Proof. Let D denote the connection of F. Then Szabó proved that there exists a Riemannian
metric g on M such that D is the Levi-Civita connection of g [3]. It is well known that
(M, g) is a Riemannian locally symmetric space [5]. Thus there exists a Riemannian globally
symmetric space (M̃, g̃), a neighbourhood Np of p in M, an isometry (with respect to g and g̃)
ϕ of Np onto a neighbourhood of ϕ(p) in M̃ ([5], theorem 5.1). Let D̃ be the Levi-Civita
connection of g̃. Let H and H̃ denote the holonomy group of D (at p) and D̃ (at p̃ = ϕ(p)),
respectively. Then dϕp induces an isomorphism between the holonomy algebra h of H and h̃

of H̃ . Hence there exists a neighbourhood Ue of the unit element e of H and a neighbourhood
Ũ ẽ of the unit element ẽ of H̃ such that dϕp induces a local isomorphism between Ue and
Ũ ẽ. Without losing generality, we can assume that M̃ is simply connected ([5], corollary 5.7).
Then H̃ is connected and is generated by the elements of Ũ ẽ.

Now we define a Berwald metric on M̃ . Identifying Tp̃(M̃) with Tp(M) through dϕp, we
get a Minkowski norm F̃ on Tp̃(M̃) by

F̃ (x̃) = F((dϕp)−1(x̃)), x̃ ∈ Tp̃(M̃).

Since F is invariant under H, F̃ is invariant under Ũ ẽ. Therefore, using the fact that H̃ is
generated by the elements of Ũ ẽ, we see that F̃ is invariant under H̃ . Now for any q̃ ∈ M̃ , we
join q̃ to õ by a curve γ̃ . Let τ̃γ̃ be the parallel displacement of D̃ along γ̃ . We then define a
Finsler metric (still denoted by F̃ ) on M̃ by

F̃ (ũ) = F̃ (τ̃γ̃ (ũ)), ũ ∈ Tq̃(M̃).

It is easily seen that F̃ is well defined and (M̃, F̃ ) is a Berwald space with connection D̃, so
it is a globally symmetric Berwald space.
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It remains to prove that ϕ is an isometry. But this follows easily from the fact that ϕ is an
affine diffeomorphism and dϕp is a linear isometry (see theorem 1.2).

The last conclusion is easy to verify. �

Corollary 3.2. Let (M,F ) be a locally symmetric Berwald space, and (M̃, π) be the universal
covering manifold of M. Then M̃ with the metric π∗(F ) is a globally symmetric Berwald space.
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